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Abstract. In the present work we investigate the propagation of helicon envelope solitons in
a layered semiconductor plasma. The nonlinear evolution equations governing the propagation
of these envelope solitons is the set of Zakharov equations (which are a more generalized form
of the nonlinear Schrödinger equation). The set of equations which have a known envelope
soliton solution are derived and the relationship between various parameters entering the system
is established. In order to investigate the propagation of helicon envelope solitons in a layered
medium we use the standard Kronig–Penney model along with its relevant boundary conditions.
These boundary conditions are used for the envelope soliton solution thereby connecting the
envelope soliton fields across the layers. This in turn leads to a nonlinear dispersion relation
which relates the nonlinear analogue of the Bloch wave number with different parameters.
We have numerically investigated the dependence of the nonlinear Bloch wave number on the
propagation frequency and have established a propagation band and gap structure for the helicon
envelope soliton in a layered semiconductor plasma.

1. Introduction

Helicons are transverse circularly polarized waves, which propagate parallel to the ambient
magnetic field in plasmas and plasma-like media i.e. semiconductors, conducting layered
media and superlattices. In the last quarter of a century the linear theory of helicons in
layered media and superlattices has received considerable attention, beginning with the work
of Baynham and Boardman (1968, 1969) which is considered a watershed for subsequent
development which took place in this area. In a later paper Baynham and Boardman (1970)
reviewed the progress on helicon and Alfven wave propagation in semiconductors and
semimetals. This work provides a comprehensive description of the above-mentioned waves
in different (bounded and unbounded) semiconductor and semimetal plasmas including
layered media. The existence of helicon waves was suggested in the experimental work
of Mann et al (1982), whilst theoretical research in this field can be found in many works
(Tseliset al 1983, Tselis and Quinn 1984, Kushwaha 1986, Sarma and Quinn 1982). Non-
local effects in helicon wave propagation have been considered by Achar (1987a). In most of
these papers the layered medium or superlattice has been modelled in a Kronig–Penney type
of periodic structure. Achar (1987b) has considered, as an alternative to the Kronig–Penney
model, a sinusoidally modulated periodic structure.

The references given above limit themselves to linear investigations. However there has
been considerable progress in nonlinear theory of wave propagation and wave interaction
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in layered medium and superlattices (see for example Bass and Tetervov 1986, 1988 and
references therein). However all the investigations referred to by Bass and Tetervov use
an effective medium approach rather than a Kronig–Penney model for the superlattices.
More recently Shahet al (1993) used a Kronig–Penney model to investigate helicon soliton
propagation in a layered medium. The equation governing the propagation of the helicon
solitons was found to be a mixture of the Korteweg–de Vries (KdV) equation and the
nonlinear Schr̈odinger (NLS) equation (Shahet al 1993), where a reductive perturbation
technique was used to arrive at the above-mentioned equation. Later Rashidet al (1995)
used Achar’s model (Achar 1987b) of a sinusoidal periodic structure to investigate the
parametric interaction of waves in a layered medium.

In the present work we undertake to examine the helicon wave solitons via Zakharov
equations (Zakharov 1972). Zakharov equations are a more generalized form of the
nonlinear Schr̈odinger equation referred to above. These equations can be solved self-
consistently and yield envelope soliton solutions where the wave under consideration can
be found to be modulationally unstable. We have used the Kronig–Penney model to describe
the layered semiconducting medium, and by using a scaling based on physical considerations
of the helicon mode, a set of Zakharov equations is derived. These equations are solved
and a nonlinear dispersion relation relating different parameters of the layered structure
is obtained. Boundary conditions of the Kronig–Penney model are used for the envelope
soliton solution, thereby relating different quantities in different layers.

2. Mathematical formulation

In order to study the propagation of helicons in a layered semiconductor medium, the
following fundamental set of equations is used

∂n

∂t
+ ∂

∂z
(nvz) = 0 (1)

∂v±
∂t
+ vz ∂

∂z
v± = − e

m
E± ± iωcv± ∓ i

e

m
vzB± (2)

∂vz

∂t
+ vz ∂

∂z
vz = − e

m
(vxBy − vyBx)− V

2
T

n

∂

∂z
n (3)

∂B±
∂z
= ∓iµj± ∓ iεµ

∂

∂t
E± (4)

∂

∂z
E± = ±i

∂

∂t
B± (5)

and

J± = −nev±. (6)

In the above equationsn, vz, v± andj± denote the electronic number density, the parallel
velocity, the perpendicular velocities (with respect to the background magnetic field) and
the perpendicular current densities respectively.E± andB± are fluctuating perpendicular
electric and magnetic fields respectively. The quantitiesµ, ε, ωc andvT are the magnetic
susceptibility, the dielectric constant, the electron cyclotron frequency and electron thermal
velocity respectively. Since helicons are circularly polarized waves the perpendicular
fluctuating quantities have all been expressed in the form

a± = ax ± iay. (7)
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The background magnetic field is directed normal to the semiconducting layers and is parallel
to thez-axis. We note here that in the above equations the various parameters have different
values in different layers. We would also like to state that we are using a semiclassical fluid
model (1)–(6) and this is valid for layered media as long as the thickness of each layer is
greater than the wavelength of the wave under consideration.

Substituting (4) and (6) in (2) and eliminatingE± andv± by using (5), we arrive at the
following equation forB±[
∂

∂t

∂2

∂z2
+ vz1 ∂

3

∂z3
− 1

c2

∂3

∂t3
− vz1
c2

∂2

∂t2

∂

∂z
− ω

2
p

c2

n1

n0

∂

∂t

−ω
2
p

c2
vz1

∂

∂z
− ω

2
p

c2

∂

∂t
∓ iωc

∂2

∂z2
± i
ωc

c2

∂2

∂t2

]
B± = 0. (8)

We note that in obtaining (8), we have included only first-order contributions from the
electron number density and parallel velocity (see below and the scaling procedure in
section 3).

In order to proceed with the linear analysis we note that for helicon waves, number
density fluctuations and fluctuations in the parallel electronic velocity are absent, therefore
contributions from these terms are important only when nonlinearities in the magnetic field
fluctuations are taken into account. Thus by putting

n = n0

and

vz1 = 0

(8) reduces to the linear differential equation inB± and in order to obtain the linear dispersion
relation for helicon waves we can use a plane wave solution of the form

B± ∼ exp
[±i(kξ + kη)z∓ iωt

]
.

This yields the same result as that of Baynham and Boardman (1968, 1969) in their
collisionless limit, andkξ andkη are the same ask and (α, β) of Baynham and Boardman
(1968, 1969). When the periodic structure is replaced by an infinite semiconductor,kη
vanishes.

3. Zakharov equations

In order to obtain the set of Zakharov equations, we begin by considering (8) and we
follow the scaling scheme used by Ovendenet al (1983) who investigated the propagation
of Alfven solitons in the solar wind. Thus in order to obtain the first Zakharov equation,
we proceed in the following manner. Terms containingn andvz are now retained to first
order—this is equivalent to a multiple-scale analysis where perturbations inn andvz are of
the order of the square of perturbations in the fluctuating magnetic field.

B = b(z, t)exp[i(kξ + kη)z− ωt ]
where now the amplitudeb is also a function (slowly varying) of the variablesz and t .

Following Ovendenet al (1983) we introduce the following scaling procedure

∂b

∂t
∼ b

τ

∂

∂z
b ∼ b

Vgτ
vz1 ∼ Vgb2

and

n1 ∼ b2
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whereτ is a time scale and 1/τ < ω; ω is of the order of the helicon wave propagation
frequency.

Using the above-mentioned scaling, we obtain the following expression to orderb3 and
1/τ .

i
∂b

∂t
+ iVg

∂

∂z
b + 1

2

∂Vg

∂(kξ + kη)
∂2

∂z2
b + vz1(kξ + kη)[±ω

2
pωc/(ω ± ωc)] − ωω2

p(n1/n0)

(ω ± ωc)[2ω ∓ ω2
pωc/(ω ± ωc)2]

= 0

(9)

where

Vg = 2c2(kξ + kη)
[2ω ∓ ω2

pωc/(ω ± ωc)2]
. (10)

(9) is the first Zakharov equation.
We note thatvg is the group velocity of the helicon wave obtained from the linear

dispersion relation within each layer which is given by

c2(kξ + kη)2− ω2 = − ωω2
p

ω ± ωc . (11)

The next Zakharov equation is obtained from the parallel equation of motion (3) and
the continuity equation given by (1). By eliminatingvz1, the perpendicular velocity and
magnetic field fluctuation we get[

∂2

∂t2
− V 2

T

∂2

∂z2

]
n1 = 1

2mµ

∂2

∂z2
|b|2+ ω

2mµ(kξ + kη)c2

∂

∂z

∂

∂t
|b|2. (12)

The third Zakharov equation is the linearized continuity equation and is given by

∂n1

∂t
+ n0

∂

∂z
vz1 = 0. (13)

(9), (12) and (13) are the set of Zakharov equations which have known envelope soliton
solutions. We note here that if in (12) and (13) the time dependence ofn1 and |b|2 is
neglected then the set of (9), (12) and (13) reduces to the standard NLS equation. Thus we
substitute in (9), (12) and (13) a solution of the form (Shahet al 1993)

b(z, t) = b0 sech((χξ + χη)z− ω∗t) eiδ�t (14)

and solve in a self-consistent manner. We note here thatb0 is the maximum envelope
soliton amplitude,χξ and χη are the nonlinear wave numbers and are analogous tokξ
and kη respectively,ω∗ is the corresponding nonlinear frequency andδ� is the nonlinear
frequency shift. We note that the solution given by the expression (14) refers to a frame of
reference moving with the group velocity (see (16) below).

Thus we obtain the following results from (9)–(14)

δ� = 1

2

∂Vg

∂(kξ + kη) (χξ + χη)
2 (15)

ω∗ = Vg(χξ + χη) (16)

(χξ + χη)2 = b2
0Y1 (17)

where

Y1 =
ω2
p

4c2n0µm(ω + ωc)(V 2
g − V 2

T )

[
1− ωVg

(kξ + kη)c2

] [±ωc(kξ + kη)Vg
(ω ± ωc) − ω

]
. (18)

We note here that ifχη = 0, then we obtain the case of the helicon soliton in an infinite
semiconductor.
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Figure 1. Periodic modulation of the number density.

4. Periodic boundary conditions

Since we are investigating the propagation of helicon solitons in a semiconducting
layered medium consisting of two alternating semiconductor layers of thicknessa1 and
a2 respectively. These two layers repeat periodically (see figure 1), thus the soliton solution
used in the previous section along with the expressions (15)–(18) that we obtained should
carry a subscripti (wherei = 1, 2) denoting different layers, for example expression (14)
should be

b = b0isech((χξi + χηi)z− ω∗i t) eiδ�i t . (19)

We now introduce the boundary conditions, which are used in the standard treatment of
layered media having a Kronig–Penney structure, and wave propagation across the layers
is considered (see for example Baynham and Boardman 1968, 1969). We note here that in
the linear case (Baynham and Boardman 1968, 1969) the solution in a periodic medium is
considered to be a superposition of transmitted and reflected wave in each layer, whereas
in the nonlinear regime the envelope soliton solution (19) is the total field. We demand that
the envelope soliton magnetic fields of the two layers are connected to one another at the
boundary of the two layers in the following way

b1|z=a1 = b2|z=a1 (20)

∂b1

∂z

∣∣∣∣
z=a1

= ∂b2

∂z

∣∣∣∣
z=a1

(21)

b1|z=0 = eiK̄db2|z=d (22)
∂b1

∂z

∣∣∣∣
z=0

= eiK̄d ∂b2

∂z

∣∣∣∣
z=d

(23)

wherea1 + a2 = d and K̄ is the nonlinear analogue of the Bloch wave number. We now
substitute the solution forb0 (given by (19)) into the set of (20)–(23). By skipping the
details of the rather messy algebra for the nonlinear analogue of the Bloch wave number,
we directly give the final expression that is obtained

W1 cos2 K̄d +W2 cosK̄d +W3 = 0 (24)

whereW1, W2 andW3 are given by

W1 = X1C
2
1C

2
2 −X2C

2
1C2S2+X3C

2
1S

2
2

W2 = X1A2+X2D2+X3B2

W3 = X1A1+X2D1+X3B1 (25)
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andA1, A2, B1, B2 andD1, D2 are given by

A1 = C2
11C

2
1C

2
22C

2
2 + C2

11C
2
1S

2
22S

2
2 + S2

11S
2
1C

2
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2
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11S
2
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2
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2
2 + 2C2

11C
2
1C22C2S22S2

+2C11C1C
2
22C

2
2S11S1+ 2C11C1S

2
22S

2
2S11S1+ 2S2

11S
2
1C22C2S22S2

+4C11C1C22C2S11S1S22S2
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2
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2
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2
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2
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2
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2
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2
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2
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2
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2
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2
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2
2
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2
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2
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2
2
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2
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2
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2
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2
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2
1C

2
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2
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2
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11S
2
1S22S

2
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1C2C11C22S2+ C2

1C
2
2C11S22+ C1C

2
2S11S1S22+ 2C1C2S11S1C22S2+ C11C

2
1S22S

2
2

+S11S1S22S
2
2C1. (26)

X1, X2 andX3 are given by

X1 = −S1C
2
2C11C1S22− S2

1C
2
2S11S22− S2

1C2S11C22S2+ C2
1S2S11C22C2

+V 2
1 S

2
2S11S22+ C1S

2
2C11S1S22

X2 = −S2
1C

2
2S11C22− 2S2

1S2S11S22C2− S2
1S

2
2S11C22+ C2

1C
2
2S11C22

+2C2
1S2S11S22C2+ C2

1S
2
2S11C22

X3 = −S1S
2
2C11S22C1− S2

1S2S11C22C2− S2
1S

2
2S11S22+ C2

1S11S22

+C2
1C2S11C22S2+ C1C

2
2C11S1S22 (27)

whereS1, S2, C1, C2, S11, S22, C11, C22 andS21, C21 are given by

S1 = sinh21 S11 = sinhχ1a1 S21 = sinhχ2a1

S2 = sinh22 S22 = sinhχ2a2 C21 = coshχ2a1

C1 = cosh21 C11 = coshχ1a1

C2 = cosh22 C22 = coshχ2a2. (28)

Here

2i = ω∗i t χi = χξi + χηi
where

i = 1, 2

S21 andC21 do not appear explicitly in expressions (25)–(27) as these have been eliminated
and expressed in terms of hyperbolic functionsSii andCii .

Equation (24) is the nonlinear dispersion relation for helicon envelope solitons
propagating across the layers of two alternating semiconductors. We note here that (24)
is quadratic in cos(K̄d), whereas in the linear case (Baynham and Boardman 1968) the
dispersion relation was linear in cos(K̄d). Thus the helicon soliton has two modes of
propagation corresponding to the two solutions of (24); we further see that this is a
complicated equation and̄Kd depends on the different parameters entering the system
in a complex fashion (see expressions (25)–(28)).

5. Numerical analysis and conclusions

In this section we numerically investigate (24) by taking some numerical values associated
with typical layered media and we attempt to establish a relationship between the nonlinear



Helicon solitons in layered semiconductor plasma 7589

analogue of the Bloch wave numberK̄ and the propagation frequencyω. As pointed out in
the preceding section (24) has two solutions (as opposed to the linear case (Baynham and
Boardman 1968) where only one solution is obtained). These solutions are given by

cosK̄d =
−W2±

√
W 2

2 − 4W1W3

2W1
(29)

andW1, W2 andW3 are defined by expressions (25)–(28). We note that real propagating
roots will be obtained only when

| cosK̄d| 6 1. (30)

The numerical investigations that we have carried out are for a metal–semiconductor
sandwich system which was used for the linear regime (Baynham and Boardman 1968).
Numerical values of the linear wave numberkξ1,2 are calculated from the linear dispersion
relation (11) by using the fact that for the linear wave vector across the layer,kη1,2 is of
the order of 1/a1,2 and we further note that the nonlinear frequencyω∗ and nonlinear wave
vectorχξ1,2 within the layer are taken asω∗ � ω; χξ1,2� kξ1,2 andχη1,2 is then obtained
through (16) which is subsequently used in (29).

Figure 2 shows the dependence of the nonlinear Bloch wave numberK̄ on the
propagation frequencyω, for two different values of the magnetic fieldB0 (1 T, 10 T
respectively). The numerical values used for the thicknessesa1, a2 and the dielectric
constantsε1, ε2; the number densitiesn1, n2; the effective massesm1, m2 and values of
21, 22, are given in the captions to figure 2. Comparisons of figure 2(a) and (b) show that
in each case there is a propagation gap and propagation bands; however as the magnetic
field increases, the frequency increases, thus both propagation bands and gaps shift to the
right. This is qualitatively similar to the case investigated by Baynham and Boardman
(1968). However in the nonlinear regime we see that asω increasesK̄ increases and then
decreases, giving us a region of propagation after which there is a propagation gap and then
again there is a region of propagation. We also note from figure 2 that the propagation gap
widens asK̄ increases in magnitude. This is opposite to the behaviour of the propagation
gap as described by Baynham and Boardman (1968). Thus investigation of the nonlinear
regime via Zakharov equations shows that the linear effect is offset, although the band-gap
structure in the propagation characteristics of the helicon wave in a layered medium is
maintained.

We note here that numerical investigations presented above are for the root with the
upper sign in (29). For the type of numerical value that we have used the negative sign
gives values which do not comply with the condition given by expression (30). Thus the
lower sign in the aformentioned expression results in non-physical solutions.

Further we would like to mention that we have presented a numerical example of a
metal–semiconductor layered medium in order to make comparison with the linear results
of Baynham and Boardman (1969), and did not take into account the effect of the Schottky
barrier, which is formed in metal–semiconductor contacts. However the effect of the
Schottky barrier could be included by modifying the current term in the set of equations
(1)–(6) for the semiconductor plasma by using the ‘depletion approximation’ (see, for
example, Rhoderick and Williams 1988) which would entail the case of a quasi-Fermi
level for electrons. This is beyond the scope of the present paper, but could form the basis
for subsequent investigations.

Our investigations show that for nonlinear helicon waves having soliton solutions, the
band gap structure in the propagation characteristics is maintained when a Kronig–Penney
model is used to depict a sandwich structure.
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(a)

(b)

Figure 2. Nonlinear analogue of the Bloch wave numberK̄ versus helicon wave frequency
ω for magnetic fields (a)B = 1 T (b) B = 10 T. Other parameters area1 = 5× 10−4 m,
a2 = 10−5 m; m1 = 0.1m0, m2 = 1.0m0; ε1 = 10, ε2 = 1; n1 = 1023 m−3, n2 = 1029 m−3

and21 = 10−3, 22 = 10−4. The scale is changed at the≈ mark.
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We had set out to describe nonlinear wave propagation of helicon waves, in a layered
medium via the set of Zakharov equations. This set has been derived and by using a Kronig–
Penney model with appropriate boundary conditions, we have derived relationships for the
propagation of the helicon solitons in a layered medium. Further a nonlinear dispersion
relation, relating the nonlinear Bloch wave numberK̄ with the propagation frequencyω
has been derived. We note that the dependence ofω upon K̄ is a complicated one due to
the presence of the factorsW1, W2 andW3, see (29). This is resolved by carrying out a
numerical analysis, the results of which have been presented graphically.
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